مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Authors
abstract
زمینه و هدف: بیماری دیابت شیوع بالایی در جامعه دارد و در صورت عدم کنترل، دارای عوارض جبران ناپذیری است و باعث آسیب زدن به چشم و نابینایی می شود. هدف این مطالعه مقایسه کارایی و قدرت پیش بینی مدل آماری رگرسیون لجستیک چندگانه با مدل شبکه عصبی مصنوعی پرسپترون چندلایه(mlp) در تفکیک بیماران دیابتی دارای رتینوپاتی از دیابتی بدون رتینوپاتی است. روش کار: نمونه ها از بین 16000 پرونده بیماران دیابتی مرکز تخصصی دیابت کرمانشاه جمع آوری گردید. 150 نفر مورد و 150 نفرکنترل وارد مطالعه شدند. اطلاعات دموگرفیک، bmi، fbs،hba1c، فشارخون، چربی خون (tc) و مدت زمان ابتلا، وضعیت سیگاری بودن و سن بیماران در دو چک لیست جداگانه از پرونده بهداشتی بیماران گردآوری شد. به منظور شناسایی ریسک فاکتورها، مدل های شبکه عصبی مصنوعی و رگرسیون لجستیک چندگانه بر داده ها برازش داده شد و از نمودار راک جهت مقایسه قدرت پیش بینی مدل ها استفاده شد. همچنین حساسیت و ویژگی دو مدل با هم بررسی گردیدند و با توجه به معیارهای (سطح زیر منحنی راک، حساسیت و ویژگی) مدل برتر معرفی گردید. یافته ها: قدرت پیش بینی رگرسیون لجستیک وmlp به ترتیب برابر 73/0 و 83/0 برآورد شد. همچنین مدلmlp دارای ویژگی (80%) و حساسیت (85%) بالاتری برخوردار بود. متغیرهای fbs (029/0p=)، bmi (0001/0p<)، سن (0001/0p<) و مدت زمان ابتلا به دیابت (0001/0p<) در مدل رگرسیون لجستیک همچنین متغیرهای سن، fbs، مدت ابتلا به دیابت، bmi، وضعیت سیگاری بودن، tcبا توجه به روش wrapper، با قدرت پیش بینی 83% درmlp معنی دار بودند. نتیجه گیری: در این مطالعه مدل mlp در تفکیک بیماران دیابتی دارای رتینوپاتی از دیابتی بدون رتینوپاتی قدرت بیشتری نشان داد. بنابراین در جوامعی که گروه های مورد و کنترل قرابت زیادی دارند (همانند این مطالعه که هردو گروه از میان دیابتی ها انتخاب گردید)، کشف تفاوت آن ها نیازمند روش های نیرومندتر مانند شبکه عصبی مصنوعی است. بنابراین استفاده از این روش ها در مطالعات پزشکی توصیه می گردد.
similar resources
بهکارگیری رگرسیون لجستیک بیزی برای تعیین عوامل خطر رتینوپاتی دیابتی
Background: Diabetes is one of the most common chronic diseases of this century. Retinopathy and makulopati are two most important implications of diabetes. In this study, Bayesian logistic regression is used to assess the factors affected on diabetic- retinopathy. Methods: Study population of this cross-sectional study contains all diabetic patients in Tehran of which 623 of them were selec...
full textمقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods : This cross-sectional study wa...
full textمقایسه ی شبکه ی عصبی مصنوعی با رگرسیون لجستیک در پیش بینی اختلالات روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف
هرچند آسیب مغزی شدید میتواند افراد را مستعد ابتلا به اختلال روانی کند، در مورد آسیب تروماتیک مغزی خفیف هنوز جای بحث و بررسی وجود دارد. هدف این پژوهش مقایسه ی قدرت شبکه عصبی مصنوعی در پیشبینی بروز اختلال روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف با رگرسیون لجستیک بود. برای این منظور در یک مطالعه کوهورت آینده نگر، 100 نفر بیمار ترومایی ارجاع شده به مرکز ترومای بیمارستان شهید بهشتی کاشان...
full textمقایسه کارآیی شبکه عصبی مصنوعی و رگرسیون چندگانه در پیش بینی وزن دنبه گوسفند
در این مطالعه ارتباط بین وزنهای تولد، از شیرگیری و پایان پروار با وزن دنبه 69 رأس گوسفند بلوچی توسط روشهای شبکه عصبی مصنوعی و رگرسیون چندگانه بررسی شد. هر دو روش با دقت بالایی وزن دنبه را پیشبینی کردند. هر چند که میانگین خطا به صورت معنیداری در روش شبکه عصبی مصنوعی کمتر از رگرسیون چندگانه بود. ضریب تعیین برآورد شده در روش شبکه عصبی مصنوعی (93/0) بالاتر از رگرسیون چندگانه (81/0) به دست آمد. ...
full textاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
full textMy Resources
Save resource for easier access later
Journal title:
مجله علوم پزشکی رازیجلد ۲۱، شماره ۱۲۴، صفحات ۷۹-۹۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023